LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MGATMDA: Predicting microbe-disease associations via multi-component graph attention network.

Photo from wikipedia

Microbes are parasitic in various human body organs and play significant roles in a wide range of diseases. Identifying microbe-disease associations is conducive to the identification of potential drug targets.… Click to show full abstract

Microbes are parasitic in various human body organs and play significant roles in a wide range of diseases. Identifying microbe-disease associations is conducive to the identification of potential drug targets. Considering the high cost and risk of biological experiments, developing computational approaches to explore the relationship between microbes and diseases is an alternative choice. However, most existing methods are based on unreliable or noisy similarity, and the prediction accuracy could be affected. Besides, it is still a great challenge for most previous methods to make predictions for the large-scale dataset. In this work, we develop a multi-component Graph Attention Network (GAT) based framework, termed MGATMDA, for predicting microbe-disease associations. MGATMDA is built on a bipartite graph of microbes and diseases. It contains three essential parts: decomposer, combiner, and predictor. The decomposer first decomposes the edges in the bipartite graph to identify the latent components by node-level attention mechanism. The combiner then recombines these latent components automatically to obtain unified embedding for prediction by component-level attention mechanism. Finally, a fully connected network is used to predict unknown microbes-disease associations. Experimental results showed that our proposed method outperformed eight state-of-the-art methods.

Keywords: component; attention; microbe disease; graph; disease; disease associations

Journal Title: IEEE/ACM transactions on computational biology and bioinformatics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.