LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genome Rearrangement Distance with a Flexible Intergenic Regions Aspect.

Photo from wikipedia

Most mathematical models for genome rearrangement problems have considered only gene order. In this way, the rearrangement distance considering some set of events, such as reversal and transposition events, is… Click to show full abstract

Most mathematical models for genome rearrangement problems have considered only gene order. In this way, the rearrangement distance considering some set of events, such as reversal and transposition events, is commonly defined as the minimum number of rearrangement events that transform the gene order from a genome G1 into the gene order from a genome G2. Recent works initiate incorporating more information such as the sizes of the intergenic regions (i.e., number of nucleotides between pairs of consecutive genes), which yields good results for estimated distances on real data. In these models, besides transforming the gene order, the sequence of rearrangement events must transform the list of intergenic regions sizes from G1 into the list of intergenic regions sizes from G2 (target list). We study a new variation where the target list is flexible, in the sense that each target intergenic region size is in a range of acceptable values. We investigate the rearrangement distance considering three sets of events, two with the exclusive use of reversals or transpositions, and the other allowing both rearrangement events. We present approximation algorithms for the problems and an NP-hardness proof.

Keywords: rearrangement distance; gene order; genome rearrangement; rearrangement; intergenic regions

Journal Title: IEEE/ACM transactions on computational biology and bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.