LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Sparse Collaborative Regression on Imaging Genetics Study of Schizophrenia

Photo by nci from unsplash

The imaging genetics approach generates large amount of high dimensional and multi-modal data, providing complementary information for comprehensive study of Schizophrenia, a complex mental disease. However, at the same time,… Click to show full abstract

The imaging genetics approach generates large amount of high dimensional and multi-modal data, providing complementary information for comprehensive study of Schizophrenia, a complex mental disease. However, at the same time, the variety of these data in structures, resolutions, and formats makes their integrative study a forbidding task. In this paper, we propose a novel model called Joint Sparse Collaborative Regression (JSCoReg), which can extract class-specific features from different health conditions/disease classes. We first evaluate the performance of feature selection in terms of Receiver operating characteristic curve and the area under the ROC curve in the simulation experiment. We demonstrate that the JSCoReg model can achieve higher accuracy compared with similar models including Joint Sparse Canonical Correlation Analysis and Sparse Collaborative Regression. We then applied the JSCoReg model to the analysis of schizophrenia dataset collected from the Mind Clinical Imaging Consortium. The JSCoReg enables us to better identify biomarkers associated with schizophrenia, which are verified to be both biologically and statistically significant.

Keywords: collaborative regression; imaging genetics; sparse collaborative; joint sparse; genetics

Journal Title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.