LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Problem of Domain/Building Block Preservation in the Evolution of Biological Macromolecules and Evolutionary Computation

Photo from wikipedia

Structurally and functionally isolated domains in biological macromolecular evolution, both natural and artificial, are largely similar to “schemata”, building blocks (BBs), in evolutionary computation (EC). The problem of preserving in… Click to show full abstract

Structurally and functionally isolated domains in biological macromolecular evolution, both natural and artificial, are largely similar to “schemata”, building blocks (BBs), in evolutionary computation (EC). The problem of preserving in subsequent evolutionary searches the already found domains / BBs is well known and quite relevant in biology as well as in EC. Both biology and EC are seeing parallel and independent development of several approaches to identifying and preserving previously identified domains / BBs. First, we notice the similarity of DNA shuffling methods in synthetic biology and multi-parent recombination algorithms in EC. Furthermore, approaches to computer identification of domains in proteins that are being developed in biology can be aligned with BB identification methods in EC. Finally, approaches to chimeric protein libraries optimization in biology can be compared to evolutionary search methods based on probabilistic models in EC. We propose to validate the prospects of mutual exchange of ideas and transfer of algorithms and approaches between evolutionary systems biology and EC in these three principal directions. A crucial aim of this transfer is the design of new advanced experimental techniques capable of solving more complex problems of in vitro evolution.

Keywords: problem; evolutionary computation; building; biology; evolution

Journal Title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.