LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting MiRNA-disease Associations by Graph Representation Learning Based on Jumping Knowledge Networks.

Photo by cdc from unsplash

Growing studies have shown that miRNAs are inextricably linked with many human diseases, and a great deal of effort has been spent on identifying their potential associations. Compared with traditional… Click to show full abstract

Growing studies have shown that miRNAs are inextricably linked with many human diseases, and a great deal of effort has been spent on identifying their potential associations. Compared with traditional experimental methods, computational approaches have achieved promising results. In this article, we propose a graph representation learning method to predict miRNA-disease associations. Specifically, we first integrate the verified miRNA-disease associations with the similarity information of miRNA and disease to construct a miRNA-disease heterogeneous graph. Then, we apply a graph attention network to aggregate the neighbor information of nodes in each layer, and then feed the representation of the hidden layer into the structure-aware jumping knowledge network to obtain the global features of nodes. The output features of miRNAs and diseases are then concatenated and fed into a fully connected layer to score the potential associations. Through five-fold cross-validation, the average AUC, accuracy and precision values of our model are 93.30%, 85.18% and 88.90%, respectively. In addition, for three case studies of the esophageal tumor, lymphoma and prostate tumor, 46, 45 and 45 of the top 50 miRNAs predicted by our model were confirmed by relevant databases. Overall, our method could provide a reliable alternative for miRNA-disease association prediction.

Keywords: representation learning; disease; disease associations; graph representation; mirna disease

Journal Title: IEEE/ACM transactions on computational biology and bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.