Gene expression data sets and protein-protein interaction (PPI) networks are two heterogeneous data sources that have been extensively studied, due to their ability to capture the co-expression patterns among genes… Click to show full abstract
Gene expression data sets and protein-protein interaction (PPI) networks are two heterogeneous data sources that have been extensively studied, due to their ability to capture the co-expression patterns among genes and their topological connections. Although they depict different traits of the data, both of them tend to group co-functional genes together. This phenomenon agrees with the basic assumption of multi-view kernel learning, according to which different views of the data contain a similar inherent cluster structure. Based on this inference, a new multi-view kernel learning based disease gene identification algorithm, termed as DiGId, is put forward. A novel multi-view kernel learning approach is proposed that aims to learn a consensus kernel, which efficiently captures the heterogeneous information of individual views as well as depicts the underlying inherent cluster structure. Some low-rank constraints are imposed on the learned multi-view kernel, so that it can effectively be partitioned into
               
Click one of the above tabs to view related content.