LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Slice-Fusion: Reducing False Positives in Liver Tumor Detection for Mask R-CNN.

Photo by kenner_be from unsplash

Automatic liver tumor detection from computed tomography (CT) makes clinical examinations more accurate. However, deep learning-based detection algorithms are characterized by high sensitivity and low precision, which hinders diagnosis given… Click to show full abstract

Automatic liver tumor detection from computed tomography (CT) makes clinical examinations more accurate. However, deep learning-based detection algorithms are characterized by high sensitivity and low precision, which hinders diagnosis given that false-positive tumors must first be identified and excluded. These false positives arise because detection models incorrectly identify partial volume artifacts as lesions, which in turn stems from the inability to learn the perihepatic structure from a global perspective. To overcome this limitation, we propose a novel slice-fusion method in which mining the global structural relationship between the tissues in the target CT slices and fusing the features of adjacent slices according to the importance of the tissues. Furthermore, we design a new network based on our slice-fusion method and Mask R-CNN detection model, called Pinpoint-Net. We evaluated proposed model on the Liver Tumor Segmentation Challenge (LiTS) dataset and our liver metastases dataset. Experiments demonstrated that our slice-fusion method not only enhance tumor detection ability via reducing the number of false-positive tumors smaller than 10 mm, but also improve segmentation performance. Without bells and whistles, a single Pinpoint-Net showed outstanding performance in liver tumor detection and segmentation on LiTS test dataset compared with other state-of-the-art models.

Keywords: slice fusion; false positives; detection; tumor detection; liver tumor

Journal Title: IEEE/ACM transactions on computational biology and bioinformatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.