LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Armed Bandit for Energy-Efficient and Delay-Sensitive Edge Computing in Dynamic Networks With Uncertainty

In the edge computing paradigm, mobile devices offload the computational tasks to an edge server by routing the required data over the wireless network. The full potential of edge computing… Click to show full abstract

In the edge computing paradigm, mobile devices offload the computational tasks to an edge server by routing the required data over the wireless network. The full potential of edge computing becomes realized only if a smart device selects the most appropriate server in terms of the latency and energy consumption, among many available ones. The server selection problem is challenging due to the randomness of the environment and lack of prior information about the same. Therefore, a smart device, which sequentially chooses a server under uncertainty, aims to improve its decision based on the historical time and energy consumption. The problem becomes more complicated in a dynamic environment, where key variables might undergo abrupt changes. To deal with the aforementioned problem, we first analyze the required time and energy to data transmission and processing. We then use the analysis to cast the problem as a budget-limited multi-armed bandit problem, where each arm is associated with a reward and cost, with time-variant statistical characteristics. We propose a policy to solve the formulated problem and prove a regret bound. The numerical results demonstrate the superiority of the proposed method compared to several online learning algorithms.

Keywords: multi armed; problem; edge computing; energy; armed bandit

Journal Title: IEEE Transactions on Cognitive Communications and Networking
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.