LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Proactive Content Caching Based on Actor–Critic Reinforcement Learning for Mobile Edge Networks

Photo from wikipedia

Mobile edge caching/computing (MEC) has emerged as a promising approach for addressing the drastic increasing mobile data traffic by bringing high caching and computing capabilities to the edge of networks.… Click to show full abstract

Mobile edge caching/computing (MEC) has emerged as a promising approach for addressing the drastic increasing mobile data traffic by bringing high caching and computing capabilities to the edge of networks. Under MEC architecture, content providers (CPs) are allowed to lease some virtual machines (VMs) at MEC servers to proactively cache popular contents for improving users’ quality of experience. The scalable cache resource model rises the challenge for determining the ideal number of leased VMs for CPs to obtain the minimum expected downloading delay of users at the lowest caching cost. To address these challenges, in this paper, we propose an actor-critic (AC) reinforcement learning based proactive caching policy for mobile edge networks without the prior knowledge of users’ content demand. Specifically, we formulate the proactive caching problem under dynamical users’ content demand as a Markov decision process and propose a AC based caching algorithm to minimize the caching cost and the expected downloading delay. Particularly, to reduce the computational complexity, a branching neural network is employed to approximate the policy function in the actor part. Numerical results show that the proposed caching algorithm can significantly reduce the total cost and the average downloading delay when compared with other popular algorithms.

Keywords: mobile edge; edge networks; critic reinforcement; caching; actor critic

Journal Title: IEEE Transactions on Cognitive Communications and Networking
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.