LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Reinforcement Learning Architecture That Transfers Knowledge Between Skills When Solving Multiple Tasks

Photo by hajjidirir from unsplash

When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. We present here the last enhanced version of a bio-inspired reinforcement-learning… Click to show full abstract

When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. We present here the last enhanced version of a bio-inspired reinforcement-learning (RL) modular architecture able to perform skill-to-skill knowledge transfer and called transfer expert RL (TERL) model. TERL architecture is based on a RL actor–critic model where both actor and critic have a hierarchical structure, inspired by the mixture-of-experts model, formed by a gating network that selects experts specializing in learning the policies or value functions of different tasks. A key feature of TERL is the capacity of its gating networks to accumulate, in parallel, evidence on the capacity of experts to solve the new tasks so as to increase the responsibility for action of the best ones. A second key feature is the use of two different responsibility signals for the experts’ functioning and learning: this allows the training of multiple experts for each task so that some of them can be later recruited to solve new tasks and avoid catastrophic interference. The utility of TERL mechanisms is shown with tests involving two simulated dynamic robot arms engaged in solving reaching tasks, in particular a planar 2-DoF arm, and a 3-D 4-DoF arm.

Keywords: transfers knowledge; knowledge skills; reinforcement learning; architecture transfers; learning architecture; multiple tasks

Journal Title: IEEE Transactions on Cognitive and Developmental Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.