LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photon-Limited Blind Deconvolution Using Unsupervised Iterative Kernel Estimation

Photo from wikipedia

Blind deconvolution is a challenging problem, but in low-light it is even more difficult. Existing algorithms, both classical and deep-learning based, are not designed for this condition. When the photon… Click to show full abstract

Blind deconvolution is a challenging problem, but in low-light it is even more difficult. Existing algorithms, both classical and deep-learning based, are not designed for this condition. When the photon shot noise is strong, conventional deconvolution methods fail because (1) the image does not have enough signal-to-noise ratio to perform the blur estimation; (2) While deep neural networks are powerful, many of them do not consider the forward process. When the noise is strong, these networks fail to simultaneously deblur and denoise; (3) While iterative schemes are known to be robust in the classical frameworks, they are seldom considered in deep neural networks because it requires a differentiable non-blind solver. This paper addresses the above challenges by presenting an unsupervised blind deconvolution method. At the core of this method is a reformulation of the general blind deconvolution framework from the conventional image-kernel alternating minimization to a purely kernel-based minimization. This kernel-based minimization leads to a new iterative scheme that backpropagates an unsupervised loss through a pre-trained non-blind solver to update the blur kernel. Experimental results show that the proposed framework achieves superior results than state-of-the-art blind deconvolution algorithms in low-light conditions.

Keywords: blind deconvolution; deconvolution; limited blind; estimation; photon limited

Journal Title: IEEE Transactions on Computational Imaging
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.