LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Material Identification From Radiographs Without Energy Resolution

Photo from wikipedia

We propose a method for performing material identification from radiographs without energy-resolved measurements. Material identification has a wide variety of applications, including in biomedical imaging, nondestructive testing, and security. While… Click to show full abstract

We propose a method for performing material identification from radiographs without energy-resolved measurements. Material identification has a wide variety of applications, including in biomedical imaging, nondestructive testing, and security. While existing techniques for radiographic material identification make use of dual energy sources, energy-resolving detectors, or additional (e.g., neutron) measurements, such setups are not always practical— requiring additional hardware and complicating imaging. We tackle material identification without energy resolution, allowing standard X-ray systems to provide material identification information without requiring additional hardware. Assuming a setting where the geometry of each object in the scene is known and the materials come from a known set of possible materials, we pose the problem as a combinatorial optimization with a loss function that accounts for the presence of scatter and an unknown gain and propose a branch and bound algorithm to efficiently solve it. We present experiments on both synthetic data and real, experimental data with relevance to security applications— thick, dense objects imaged with MeV X-rays. We show that material identification can be efficient and accurate, for example, in a scene with three shells (two copper, one aluminum), our algorithm ran in six minutes on a consumer-level laptop and identified the correct materials as being among the top 10 best matches out of 8,000 possibilities.

Keywords: identification radiographs; identification; radiographs without; without energy; material identification

Journal Title: IEEE Transactions on Computational Imaging
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.