LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pinning Asymptotic Stabilization of Probabilistic Boolean Networks: A Digraph Approach

Photo by fasyahalim_ from unsplash

This article investigates the pinning asymptotic stabilization of probabilistic Boolean networks (PBNs) by a digraph approach. In order to stabilize the PBN asymptotically, a mode-independent pinning control (MIPC) is designed… Click to show full abstract

This article investigates the pinning asymptotic stabilization of probabilistic Boolean networks (PBNs) by a digraph approach. In order to stabilize the PBN asymptotically, a mode-independent pinning control (MIPC) is designed to make the target state a fixed point, and transform the state transition digraph into one that has a spanning branching rooted at the target vertex. It is shown that if there is a mode-dependent pinning control that can asymptotically stabilize the PBN, then there must exist an MIPC that can do the same with fewer pinned nodes and control inputs. A necessary and sufficient condition is given to verify the feasibility of a set of pinned nodes based on an auxiliary digraph. Three algorithms are proposed to find a feasible set of pinned nodes with the minimum cardinality. The main results are extended to the case where the target is a limit cycle. Compared with the existing results, the total computational complexity of these algorithms is strongly reduced. The obtained results are applied to a numerical example and a cell apoptosis network.

Keywords: digraph approach; stabilization probabilistic; boolean networks; probabilistic boolean; asymptotic stabilization; pinning asymptotic

Journal Title: IEEE Transactions on Control of Network Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.