LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On Frame Asynchronous Coded Slotted ALOHA: Asymptotic, Finite Length, and Delay Analysis

Photo from wikipedia

We consider a frame asynchronous coded slotted ALOHA (FA-CSA) system for uncoordinated multiple access, where users join the system on a slot-by-slot basis according to a Poisson random process, and… Click to show full abstract

We consider a frame asynchronous coded slotted ALOHA (FA-CSA) system for uncoordinated multiple access, where users join the system on a slot-by-slot basis according to a Poisson random process, and in contrast to standard frame synchronous CSA (FS-CSA), users are not frame-synchronized. We analyze the performance of FA-CSA in terms of packet loss rate and delay. In particular, we derive the (approximate) density evolution that characterizes the asymptotic performance of FA-CSA when the frame length goes to infinity. We show that, if the receiver can monitor the system before anyone starts transmitting, a boundary effect similar to that of spatially coupled codes occurs, which greatly improves the iterative decoding threshold. Furthermore, we derive tight approximations of the error floor (EF) for the finite frame length regime, based on the probability of occurrence of the most frequent stopping sets. We show that, in general, FA-CSA provides better performance in both the EF and waterfall regions as compared to FS-CSA. Moreover, FA-CSA exhibits better delay properties than FS-CSA.

Keywords: length; asynchronous coded; frame; delay; frame asynchronous; csa

Journal Title: IEEE Transactions on Communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.