Resistive memory is a promising technology for achieving unprecedented storage densities and new in-memory computing features. However, to fulfill their promise, resistive memories require array architectures suffering from a severe… Click to show full abstract
Resistive memory is a promising technology for achieving unprecedented storage densities and new in-memory computing features. However, to fulfill their promise, resistive memories require array architectures suffering from a severe interference effect called “sneak paths.” In this paper, we address the sneak-path problem through a communication-theory framework. Starting from the fundamental problem of readout with parallel-resistance interference, we develop several tools for detection and coding that significantly improve memory reliability. For the detection problem, we formulate and derive the optimal detector for a realistic array model, and then propose simplifications that enjoy similarly good performance and simpler implementation. Complementing detection for better error rates is done by a new coding scheme that shapes the stored bits to get lower sneak-path incidence. For the same storage rates, the new coding scheme exhibits error rates lower by an order of magnitude compared to known shaping techniques.
               
Click one of the above tabs to view related content.