LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Data Correlation-Aware Resource Management in Wireless Virtual Reality (VR): An Echo State Transfer Learning Approach

Photo by joszczepanska from unsplash

Providing seamless connectivity for wireless virtual reality (VR) users has emerged as a key challenge for future cloud-enabled cellular networks. In this paper, the problem of wireless VR resource management… Click to show full abstract

Providing seamless connectivity for wireless virtual reality (VR) users has emerged as a key challenge for future cloud-enabled cellular networks. In this paper, the problem of wireless VR resource management is investigated for a wireless VR network in which VR contents are sent by a cloud to cellular small base stations (SBSs). The SBSs will collect tracking data from the VR users, over the uplink, in order to generate the VR content and transmit it to the end-users using downlink cellular links. For this model, the data requested or transmitted by the users can exhibit correlation, since the VR users may engage in the same immersive virtual environment with different locations and orientations. As such, the proposed resource management framework can factor in such spatial data correlation, so as to better manage uplink and downlink traffic. This potential spatial data correlation can be factored into the resource allocation problem to reduce the traffic load in both the uplink and downlink. In the downlink, the cloud can transmit 360° contents or specific visible contents (e.g., user field of view) that are extracted from the original 360° contents to the users according to the users’ data correlation so as to reduce the backhaul traffic load. In the uplink, each SBS can associate with the users that have similar tracking information so as to reduce the tracking data size. This data correlation-aware resource management problem is formulated as an optimization problem whose goal is to maximize the users’ successful transmission probability, defined as the probability that the content transmission delay of each user satisfies an instantaneous VR delay target. To solve this problem, a machine learning algorithm that uses echo state networks (ESNs) with transfer learning is introduced. By smartly transferring information on the SBS’s utility, the proposed transfer-based ESN algorithm can quickly cope with changes in the wireless networking environment due to users’ content requests and content request distributions. Simulation results demonstrate that the developed algorithm achieves up to 15.8% and 29.4% gains in terms of successful transmission probability compared to Q-learning with data correlation and Q-learning without data correlation, respectively.

Keywords: wireless; correlation; resource management; data correlation

Journal Title: IEEE Transactions on Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.