LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Tx-Rx Beamforming and Power Allocation for 5G Millimeter-Wave Non-Orthogonal Multiple Access Networks

Photo by dylan_nolte from unsplash

In this paper, we investigate the combination of non-orthogonal multiple access and millimeter-wave communications (mmWave-NOMA). A downlink cellular system is considered, where an analog phased array is equipped at both… Click to show full abstract

In this paper, we investigate the combination of non-orthogonal multiple access and millimeter-wave communications (mmWave-NOMA). A downlink cellular system is considered, where an analog phased array is equipped at both the base station and users. A joint Tx-Rx beamforming and power allocation problem is formulated to maximize the achievable sum rate (ASR) subject to a minimum rate constraint for each user. As the problem is non-convex, we propose a sub-optimal solution with three stages. In the first stage, the optimal power allocation with a closed form is obtained for an arbitrary fixed Tx-Rx beamforming. In the second stage, the optimal Rx beamforming with a closed form is designed for an arbitrary fixed Tx beamforming. In the third stage, the original joint Tx-Rx beamforming and power allocation problem is reduced to a Tx beamforming problem by using the previous results, and a boundary-compressed particle swarm optimization (BC-PSO) algorithm is proposed to obtain a sub-optimal solution. Extensive performance evaluations are conducted to verify the rational of the proposed solution, and the results show that the proposed sub-optimal solution can achieve a significantly better performance in terms of ASR compared with those of the state-of-the-art schemes and the conventional mmWave orthogonal multiple access (mmWave-OMA) system.

Keywords: joint beamforming; multiple access; orthogonal multiple; power; power allocation

Journal Title: IEEE Transactions on Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.