LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Near-Capacity Detection and Decoding: Code Design for Dynamic User Loads in Gaussian Multiple Access Channels

Photo from wikipedia

This paper considers the forward error correction (FEC) code design for approaching the capacity of a dynamic multiple access channel (MAC) where both the number of users and their respective… Click to show full abstract

This paper considers the forward error correction (FEC) code design for approaching the capacity of a dynamic multiple access channel (MAC) where both the number of users and their respective signal powers keep constantly changing, resembling the scenario of an actual wireless cellular system. To obtain a low-complexity non-orthogonal multiple access (NOMA) scheme, we propose a serial concatenation of a low-density parity-check (LDPC) code and a repetition code (REP), this way achieving near Gaussian MAC (GMAC) capacity performance while coping with the dynamics of the MAC system. The joint optimization of the LDPC and REP codes is addressed by matching the analytical extrinsic information transfer (EXIT) functions of the sub-optimal multi-user detector (MUD) and the channel code for a specific and static MAC system, achieving near-GMAC capacity. We show that the near-capacity performance can be flexibly maintained with the same LDPC code regardless of the variations in the number of users and power levels. This flexibility (or elasticity) is provided by the REP code, acting as “user-load and power equalizer”, dramatically simplifying the practical implementation of NOMA schemes, as only a single LDPC code is needed to cope with the dynamics of the MAC system.

Keywords: near capacity; multiple access; code design; capacity; code

Journal Title: IEEE Transactions on Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.