LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amplify-and-Forward Relaying With Maximal Ratio Combining Over Fluctuating Two-Ray Channel: Non-Asymptotic and Asymptotic Performance Analysis

Photo from wikipedia

Fluctuating two-ray (FTR) channel model was shown to effectively characterize millimeter wave (mmWave) communication channels. In this article, we adopt FTR to investigate amplify-and-Forward (AF) mmWave relaying system. Two communications… Click to show full abstract

Fluctuating two-ray (FTR) channel model was shown to effectively characterize millimeter wave (mmWave) communication channels. In this article, we adopt FTR to investigate amplify-and-Forward (AF) mmWave relaying system. Two communications scenarios are considered corresponding to the presence and absence of a direct link between the transmitter and receiver. Outage probability and symbol error rate (SER) are then analytically obtained as performance metrics. The results are further compared with the corresponding metrics obtained based on conventional channel models including Nakagami- ${m}$ and two-wave with diffuse power (TWDP). Especially, for the high-SNR regime, our analyses indicate that performance evaluations based on the conventional models significantly deviate from that of based on the FTR model. Our results provide quantitative insights on the importance of model selection in design and performance evaluations of relay-based mmWave systems. Moreover, for the high-SNR regime, we carry out asymptotic analysis and obtain a low-complexity expression for the achieved AF relaying gain. Such an expression provides a quantitative measure on whether or not AF relaying outperforms no-relaying in a given setting. Extensive numerical and simulation results are provided to confirm the accuracy of the analysis and investigate system performance in different settings.

Keywords: two ray; performance; amplify forward; forward relaying; fluctuating two; analysis

Journal Title: IEEE Transactions on Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.