LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Millimeter-Wave Coordinated Beamforming Enabled Cooperative Network: A Stochastic Geometry Approach

Photo from wikipedia

Millimeter-wave (mmWave) and ultra-dense networks are two key technologies for the fifth-generation (5G) and beyond communication system. However, the ultra-dense deployment of small base stations (SBSs) might introduce severe interference… Click to show full abstract

Millimeter-wave (mmWave) and ultra-dense networks are two key technologies for the fifth-generation (5G) and beyond communication system. However, the ultra-dense deployment of small base stations (SBSs) might introduce severe interference to users that connect to SBSs. This paper analyzes the performance of 5G communication networks where the SBSs with coordinated beamforming, operating at mmWave frequency band and macro base stations (MBSs) operating at sub-6 GHz coexist. First, by utilizing a stochastic geometry approach, we obtain the cell association probability expressions in terms of different cell association biases, base station density ratios and probabilities of line of sight (LoS) link. Furthermore, we propose a clustering method to choose some SBSs to eliminate intra-cell interference. Then, we put forward an average distance from the Kth SBS to a user to obtain signal-to-interference-ratio (SINR) and rate coverage probability expressions. The simulation results validate the correctness of the expressions, and indicate that the optimal cardinality of coordinated SBSs increases with the density of SBSs. In addition, the relationship between the cluster size K and the average energy efficiency is obtained, which can be used to guide the coordination principle in 5G and beyond communication systems.

Keywords: geometry approach; geometry; coordinated beamforming; millimeter wave; stochastic geometry

Journal Title: IEEE Transactions on Communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.