LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Massive Unsourced Random Access: Exploiting Angular Domain Sparsity

Photo from wikipedia

This paper investigates the unsourced random access (URA) scheme to accommodate numerous machine-type users communicating to a base station equipped with multiple antennas. Existing works adopt a slotted transmission strategy… Click to show full abstract

This paper investigates the unsourced random access (URA) scheme to accommodate numerous machine-type users communicating to a base station equipped with multiple antennas. Existing works adopt a slotted transmission strategy to reduce system complexity; they operate under the framework of coupled compressed sensing (CCS) which concatenates an outer tree code to an inner compressed sensing code for slot-wise message stitching. We suggest that by exploiting the MIMO channel information in the angular domain, redundancies required by the tree encoder/decoder in CCS can be removed to improve spectral efficiency, thereby an uncoupled transmission protocol is devised. To perform activity detection and channel estimation, we propose an expectation-maximization-aided generalized approximate message passing algorithm with a Markov random field support structure, which captures the inherent clustered sparsity structure of the angular domain channel. Then, message reconstruction in the form of a clustering decoder is performed by recognizing slot-distributed channels of each active user based on similarity. We put forward the slot-balanced $ K $ -means algorithm as the kernel of the clustering decoder, resolving constraints and collisions specific to the application scene. Extensive simulations reveal that the proposed scheme achieves a better error performance at high spectral efficiency compared to the CCS-based URA schemes.

Keywords: unsourced random; angular domain; sparsity; random access; domain

Journal Title: IEEE Transactions on Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.