We consider a generalized space shift keying (GSSK)-enabled multiple-input multiple-output (MIMO) ambient backscatter communication (ABC) system. We propose a scheme to exploit the multiple antenna structure of the system to… Click to show full abstract
We consider a generalized space shift keying (GSSK)-enabled multiple-input multiple-output (MIMO) ambient backscatter communication (ABC) system. We propose a scheme to exploit the multiple antenna structure of the system to achieve a lower error-rate performance than conventional ABC systems. Furthermore, we present a novel low complexity energy-based maximum likelihood (EML) GSSK detector, which does not require the perfect knowledge of the ambient source’s signal, unlike the conventional ABC receivers. To gain insights into the performance of the proposed scheme, we derive the exact pairwise error probability (PEP) of the EML detector and further obtain an upper bound on the probability of error. We also derive a simple asymptotic PEP expression as the number of antennas of the reader becomes large. Finally, we derive a simple, asymptotic PEP at the reader when the noise variance approaches zero, i.e., under the large signal-to-interference ratio regime. We validate our analysis through Monte Carlo simulations and show a small performance loss due to the approximations.
               
Click one of the above tabs to view related content.