LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning-Based User Clustering in NOMA-Aided MIMO Networks With Spatially Correlated Channels

Photo from wikipedia

This paper considers the integration of non-orthogonal multiple access (NOMA) into massive multi-input multi-output (MIMO) systems for downlink transmission. We consider the joint design of user clustering, transmit beamforming, and… Click to show full abstract

This paper considers the integration of non-orthogonal multiple access (NOMA) into massive multi-input multi-output (MIMO) systems for downlink transmission. We consider the joint design of user clustering, transmit beamforming, and power allocation to minimize the total transmit power while meeting the signal-to-interference-and-noise ratio targets. We decompose this challenging mixed-integer programming problem into three separate subproblems to solve. We propose a low-complexity learning-based user clustering algorithm, which is a modified version of mean shift clustering with a new channel correlation based clustering metric. The proposed clustering algorithm determines the clusters to trade-off between spatial dimension and power dimension offered by respective MIMO and NOMA for user multiplexing. We then design zero-forcing transmit beamformers to eliminate inter-cluster interference and optimize power allocation to minimize the total transmit power. We provide two case studies for both co-located and distributed massive MIMO systems in spatially highly correlated prorogation environments. Simulation results show that our proposed algorithm forms NOMA clusters based on the available degrees of freedom in the system to effectively use both spatial and power dimensions, which results in a substantial performance improvement over MIMO-only methods or other existing clustering methods in such environments.

Keywords: user clustering; transmit; clustering noma; power; based user; learning based

Journal Title: IEEE Transactions on Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.