LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decentralized Control of Distributed Cloud Networks With Generalized Network Flows

Photo by lukaszlada from unsplash

Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications (also referred to as augmented information… Click to show full abstract

Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications (also referred to as augmented information services), such as industrial automation and metaverse experiences (e.g., extended reality, immersive gaming). While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty control theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing network control policies.

Keywords: network; control distributed; distributed cloud; control; cloud networks; decentralized control

Journal Title: IEEE Transactions on Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.