The provision of accurate localization is an increasingly important feature of wireless networks. To this end, a reliable distinction between line-of-sight (LOS) and non-LOS (NLOS) radio links is necessary to… Click to show full abstract
The provision of accurate localization is an increasingly important feature of wireless networks. To this end, a reliable distinction between line-of-sight (LOS) and non-LOS (NLOS) radio links is necessary to avoid degenerative localization estimation biases. Interestingly, LOS and NLOS transmissions affect the polarization of the received signals differently. In this work, we leverage this phenomenon to propose a threshold-based LOS/NLOS classifier exploiting weighted differential carrier phase measurements over a single link with different polarization configurations. Operation in either full or limited polarization diversity systems is possible. We develop a framework for assessing the performance of the proposed classifier, and show through simulations the performance impact of the reflecting materials in NLOS scenarios. For instance, the classifier is far more efficient in NLOS scenarios with wooden reflectors than in those with metallic reflectors. Numerical results evince the potential performance gains from exploiting full polarization diversity, properly weighting the differential carrier phase measurements, and using multi-carrier/tone transmissions. Finally, we show that the optimum decision threshold is inversely proportional to the path power gain in dB, while it does not depend significantly on the material of potential NLOS reflectors.
               
Click one of the above tabs to view related content.