LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Validation and Optimization of Calculated Stress Fields in Double-Mold Optoelectronics Sensor Packaging

Photo from wikipedia

Thermomechanical modeling of a new double-overmolded optical sensor package, comprising a highly filled, as well as an unfilled, strongly thermally expanding transfer molding compound, is presented. Materials’ characterization of the… Click to show full abstract

Thermomechanical modeling of a new double-overmolded optical sensor package, comprising a highly filled, as well as an unfilled, strongly thermally expanding transfer molding compound, is presented. Materials’ characterization of the polymers using thermal, thermomechanical, dynamic, and optical correlation methods was used to set up finite element models of the three major steps in the assembly packaging process. The results of the simulation were validated by in-plane stress determination using a piezoresistive integrated circuit measured at various temperatures. In addition, the overall package substrate warpage was optically characterized while loading the sample on a hot plate. Agreement between the measurement and the simulation was only found when the stress-free state of the polymers was set to be at the curing-onset temperature. The results obtained are compared with different levels of complexity on materials’ characterization and constitutive modeling and could finally be used for sensitivity analysis of the sensor package design. A thicker and more compliant transparent molding compound in this package was found to reduce the stresses that could cause delamination.

Keywords: fields double; validation optimization; calculated stress; package; optimization calculated; stress fields

Journal Title: IEEE Transactions on Components, Packaging and Manufacturing Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.