LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles.
Sign Up to like articles & get recommendations!
Silicon-Based IC-Waveguide Integration for Compact and High-Efficiency mm-Wave Spatial Power Combiners
A novel and compact millimeter-wave (mm-Wave) spatial power combiner is developed integrating a silicon-based integrated circuit (IC) in a metal waveguide (WG). As an initial step toward integrating a silicon-based… Click to show full abstract
A novel and compact millimeter-wave (mm-Wave) spatial power combiner is developed integrating a silicon-based integrated circuit (IC) in a metal waveguide (WG). As an initial step toward integrating a silicon-based active IC in a WG, a passive back-to-back (B2B) transition incorporating a four-way spatial power splitter and combiner is realized at $E$ -band (71–86 GHz). In contrast to existing solutions, the proposed design considers power splitting and combining using a low-loss wireless transition between the IC and the WG. The proposed B2B structure comprises an IC implemented using the Institute for High Performance Microelectronics (IHP’s) 0.13-$\mu \text{m}$ SiGe BiCMOS technology integrated into the $H$ -plane of a WG. The IC is postprocessed and assembled in the WG prototype. The measured prototype shows a return loss better than 13 dB, an average insertion loss of 1.7 dB for a single transition, and a fractional bandwidth of 26.4% (69–90 GHz).
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 0
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.