LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reliable Sliding Mode Control of Fast Sampling Singularly Perturbed Systems: A Redundant Channel Transmission Protocol Approach

Photo by hannahrdg from unsplash

This paper endeavors to investigate the output-feedback sliding mode control (SMC) issue of the networked singularly perturbed systems (SPSs) under fast sampling. In order to improve the reliability of network… Click to show full abstract

This paper endeavors to investigate the output-feedback sliding mode control (SMC) issue of the networked singularly perturbed systems (SPSs) under fast sampling. In order to improve the reliability of network communication, a redundant channel transmission protocol is introduced in the SMC design. Based on the measurement outputs, a sliding function is constructed with the consideration of the transmission protocol. With the aid of some appropriate Lyapunov functions, the sufficient conditions are derived to ensure the mean-square exponentially ultimately boundedness of the sliding mode dynamics and the reachability of the specified sliding surface. Moreover, a convex optimization algorithm is formulated to solve the output-feedback SMC law by searching the available upper bound of the singularly perturbed parameter. Finally, an operational amplifier circuit is exploited to explore the influences from the redundant channel transmission protocol to the output-feedback SMC performance and the estimated $\varepsilon$ -bound.

Keywords: redundant channel; sliding mode; singularly perturbed; transmission; transmission protocol

Journal Title: IEEE Transactions on Circuits and Systems I: Regular Papers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.