In this paper, a new filtering power divider topology is presented. The divider is distinguished from traditional power dividers as it is capable of having a predefined transmission response, an… Click to show full abstract
In this paper, a new filtering power divider topology is presented. The divider is distinguished from traditional power dividers as it is capable of having a predefined transmission response, an improved isolation performance between the two output ports over a wide frequency range, and reflectionless responses at all three ports. Since the proposed divider topology is based on complete closed-form design equations derived through a rigorous mathematical analysis, it make it possible to design reflectionless filtering power dividers with any prespecified requirements without using time-consuming parametric optimizations. For verifying the proposed divider topology, we have designed, fabricated, and measured a microstrip Butterworth filtering power divider. The proposed design approach can also be applied to the design of filtering power dividers with other transmission responses such as Chebyshev and inverse-Chebyshev responses.
               
Click one of the above tabs to view related content.