Emerging advanced System-on-Chip (SoC) designs contain more and more complicated functions to be accelerated. This presents a challenge to conventional design approaches which use different hardware architectures or separate hardware… Click to show full abstract
Emerging advanced System-on-Chip (SoC) designs contain more and more complicated functions to be accelerated. This presents a challenge to conventional design approaches which use different hardware architectures or separate hardware accelerators to implement the various functions. To tackle this challenge, for the first time, we propose a generalized hardware accelerator called “Huicore” to speed up diverse functions on the same substrate. Through the analysis and transformation of mathematical characteristics, we reveal the commonality of many complicated functions using the CORDIC algorithm. Then we explore a reconfigurable architecture to implement them. The proposed reconfigurable accelerator can not only accelerate the implementation of many complicated functions, but also has small area, low power consumption and high precision. It is very suitable for integration in a SoC system to accelerate the implementation of various applications.
               
Click one of the above tabs to view related content.