LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Active EMI Cancellation Technique Achieving a 25-dB Reduction in Conducted EMI of LIN Drivers

Photo from wikipedia

Robustness to electromagnetic interference (EMI) is one of the primary design aspects of state of the art automotive ICs like System Basis Chips (SBCs) which provide a wide range of… Click to show full abstract

Robustness to electromagnetic interference (EMI) is one of the primary design aspects of state of the art automotive ICs like System Basis Chips (SBCs) which provide a wide range of analog, power regulation and digital functions on the same die. One of the primary sources of conducted EMI on the Local Interconnect Network (LIN) driver output is an integrated switching DC-DC regulator noise coupling through the parasitic substrate capacitance of the SBC. In this paper an adaptive active EMI cancellation technique to cancel the switching noise of the DC-DC regulator on the LIN driver output to ensure electromagnetic compatibility (EMC) is presented. The proposed active EMI cancellation circuit synthesizes a phase synchronized cancellation pulse which is then injected onto the LIN driver output using an on-chip tunable capacitor array to cancel the switching noise injected via substrate. The proposed EMI reduction technique can track and cancel substrate noise independent of process technology and device parasitics, input voltage, duty cycle and loading conditions of the DC-DC switching regulator. The EMI cancellation system is designed and fabricated on a 180nm Bipolar-CMOS-DMOS (BCD) process with an integrated power stage of a DC-DC buck regulator at a switching frequency of 2MHz along with an automotive LIN driver. The EMI cancellation circuit occupies an area of 0.7 mm2, which is less than 3% of the overall area in a standard SBC and consumes 12.5 mW of power and achieves 25 dB reduction of conducted EMI in the LIN driver output’s power spectrum at the switching frequency and its harmonics.

Keywords: emi cancellation; active emi; lin; cancellation; lin driver; conducted emi

Journal Title: IEEE Transactions on Circuits and Systems I: Regular Papers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.