LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Process, Bias, and Temperature Scalable CMOS Analog Computing Circuits for Machine Learning

Photo from wikipedia

Analog computing is attractive compared to digital computing due to its potential for achieving higher computational density and higher energy efficiency. However, unlike digital circuits, conventional analog computing circuits cannot… Click to show full abstract

Analog computing is attractive compared to digital computing due to its potential for achieving higher computational density and higher energy efficiency. However, unlike digital circuits, conventional analog computing circuits cannot be easily mapped across different process nodes due to differences in transistor biasing regimes, temperature variations and limited dynamic range. In this work, we generalize the previously reported margin-propagation-based analog computing framework for designing novel shape-based analog computing (S-AC) circuits that can be easily cross-mapped across different process nodes. Similar to digital designs S-AC designs can also be scaled for precision, speed, and power. As a proof-of-concept, we show several examples of S-AC circuits implementing mathematical functions that are commonly used in machine learning architectures. Using circuit simulations we demonstrate that the circuit input/output characteristics remain robust when mapped from a planar CMOS 180nm process to a FinFET 7nm process. Also, using benchmark datasets we demonstrate that the classification accuracy of a S-AC based neural network remains robust when mapped across the two processes and to changes in temperature.

Keywords: computing circuits; analog; machine learning; process; analog computing

Journal Title: IEEE Transactions on Circuits and Systems I: Regular Papers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.