Semiconductor aging is a serious threat to the reliability of a system. We address the aging level of semiconductor components by describing the degree of semiconductor aging under certain operating… Click to show full abstract
Semiconductor aging is a serious threat to the reliability of a system. We address the aging level of semiconductor components by describing the degree of semiconductor aging under certain operating conditions, including voltage, frequency, temperature, and usage rate. Aging level information can be used to follow the real aging rate of a device, predict the remaining life, and control the device performance under certain degradation conditions by balancing the operation of various device components. Such applications can improve the reliability of automotive semiconductor systems, which should have longer lives than mobile systems. In this brief, we present an aging level estimating flip-flop (FF) that can be used for these and other applications as well. Moreover, we can control the operation of the proposed FF by controlling its clock and control signals. We demonstrate an application of the proposed FF for aging-monitoring, showing that, by halting the operation of the proposed FF, the power consumption is significantly reduced compared with other approaches.
               
Click one of the above tabs to view related content.