LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Bandwidth Spatial Equalization for mmWave Massive MU-MIMO With Processing-in-Memory

Photo by saadahmad_umn from unsplash

All-digital basestation (BS) architectures enable superior spectral efficiency compared to hybrid solutions in massive multi-user MIMO systems. However, supporting large bandwidths with all-digital architectures at mmWave frequencies is challenging as… Click to show full abstract

All-digital basestation (BS) architectures enable superior spectral efficiency compared to hybrid solutions in massive multi-user MIMO systems. However, supporting large bandwidths with all-digital architectures at mmWave frequencies is challenging as traditional baseband processing would result in excessively high power consumption and large silicon area. The recently-proposed concept of finite-alphabet equalization is able to address both of these issues by using equalization matrices that contain low-resolution entries to lower the power and complexity of high-throughput matrix-vector products in hardware. In this brief, we explore two different finite-alphabet equalization hardware implementations that tightly integrate the memory and processing elements: (i) a parallel array of multiply-accumulate (MAC) units and (ii) a bit-serial processing-in-memory (PIM) architecture. Our all-digital VLSI implementation results in 28nm CMOS show that the bit-serial PIM architecture reduces the area and power consumption up to a factor of $ 2\times $ and $3\times $ , respectively, when compared to a parallel MAC array that operates at the same throughput.

Keywords: equalization; tex math; mimo; memory; inline formula; processing memory

Journal Title: IEEE Transactions on Circuits and Systems II: Express Briefs
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.