LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Complex Dynamics of Coupled Neurons Through a Memristive Synapse: Extreme Multistability and Its Control With Selection of the Desired State

Photo from wikipedia

In this contribution, a new configuration involving the coupling of a 2D Fitzhugh-Nagumo (FN) neuron with a 3D Hindmarsh-Rose (HR) neuron via a memristive synapse is investigated. The self-excited dynamics… Click to show full abstract

In this contribution, a new configuration involving the coupling of a 2D Fitzhugh-Nagumo (FN) neuron with a 3D Hindmarsh-Rose (HR) neuron via a memristive synapse is investigated. The self-excited dynamics of the coupled neurons is revealed after the analysis of the equilibria of the model. During the numerical investigation of the model, resting activity, periodic spikes, periodic and chaotic bursts are found. More interestingly, the coupled neurons display the striking and rare phenomenon of homogeneous extreme multistability. It corresponds to the coexistence of an infinite number of firing activities of the same nature but located at different levels in the phase space. Furthermore, the selection of the desired electrical activity dynamics is also underlined through the noninvasive control scheme. Finally, an electronic circuit of the coupled neuron is designed and investigated in the Pspice environment to further support the obtained results.

Keywords: coupled neurons; dynamics coupled; memristive synapse; selection desired; extreme multistability

Journal Title: IEEE Transactions on Circuits and Systems II: Express Briefs
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.