LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BECT Spike Detection Based on Novel Multichannel Data Weighted Fusion Algorithm

Photo by campaign_creators from unsplash

Benign epilepsy with spinous waves in the central temporal region (BECT) is the most common epilepsy syndromes in children. Spike discharges in the Rolandic area are important biomarkers for diagnosis… Click to show full abstract

Benign epilepsy with spinous waves in the central temporal region (BECT) is the most common epilepsy syndromes in children. Spike discharges in the Rolandic area are important biomarkers for diagnosis evaluation. Conventional single-channel electroencephalogram (EEG) based spike detection methods are generally susceptible to artifact interference. To address this issue, a novel spike detection method based on multichannel EEG weighted fusion strategy is developed in this brief. The proposed algorithm mainly includes multichannel spike candidate sample screening, data weighted fusion, time-series feature extraction and long-short-time memory neural networks (LSTM) detection. Studies on 15 BECT children show that the proposed algorithm can obtain an average of 95.74% F1 scores, 93.94% sensitivity, 97.73% precision for all subjects.

Keywords: data weighted; algorithm; detection; spike detection; weighted fusion

Journal Title: IEEE Transactions on Circuits and Systems II: Express Briefs
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.