LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Fractional Kalman Filter Algorithm With Noisy Input

Photo by richtea360 from unsplash

For a fractional order system (FOS) affected by input noise, the result of general fractional Kalman filter (GFKF) is biased. To overcome this, this brief proposes a new fractional Kalman… Click to show full abstract

For a fractional order system (FOS) affected by input noise, the result of general fractional Kalman filter (GFKF) is biased. To overcome this, this brief proposes a new fractional Kalman filter (FKF) algorithm considering input noise. Firstly, it is proved that the result of the GFKF method is biased when the input vector includes the noise. Secondly, we redefine the criterion function of the error of state estimation during the derivation process of the FKF, in which a term about the input noise is added into the covariance matrix during the prior-estimation. Then an improved covariance matrix and Kalman gain are gotten, respectively. Due to the consideration of the input noise, this method can remove the error caused by the input noise. Experiment results illustrate that the algorithm of this brief has superior performance for systems with input noise compared with the GFKF method.

Keywords: kalman filter; input noise; fractional kalman; input

Journal Title: IEEE Transactions on Circuits and Systems II: Express Briefs
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.