LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of Public Sentiment on COVID-19 Vaccination Using Twitter

Photo from wikipedia

Social media has become a vital platform for individuals, organizations, and governments worldwide to communicate and express their views. During the coronavirus disease 2019 (COVID-19) pandemic, social media sites play… Click to show full abstract

Social media has become a vital platform for individuals, organizations, and governments worldwide to communicate and express their views. During the coronavirus disease 2019 (COVID-19) pandemic, social media sites play a crucial role in people communicating, sharing, and expressing their perceptions on various topics. Analyzing such textual data can improve the response time of governments and organizations to act on alarming issues. This study aims to perform sentiment analysis on the subject of COVID-19 vaccination, perform temporal and spatial analyses of the textual data, and find the most frequently discussed topics that may help organizations bring awareness to those topics. In this work, the sentiment analysis of tweets was performed using 14 different machine learning classifiers and natural language processing (NLP). Lexicon-based TextBlob and Vader are used for annotating the data. A natural language toolkit is used for preprocessing of textual data. Our analysis observed that unigram models outperform bigram and trigram models for all four datasets. Models using term frequency-inverse document frequency (TF-IDF) have higher accuracy than models using count vectorizer. In the count vectorizer class, logistic regression has the best average accuracy with 91.925%. In the TF-IDF class, logistic regression has the best average accuracy of 92%; logistic regression has the highest average recall, F1-score, and ten cross-validation scores, and a ridge classifier has the highest average precision. The unigram models show a standard deviation (SD) of less than 1 for all classifiers except for the Gaussian Naïve Bayes showing 1.18. The experimental results reveal the dates and times in which most positive, negative, and neutral tweets are posted.

Keywords: analysis; textual data; covid vaccination; sentiment

Journal Title: IEEE Transactions on Computational Social Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.