LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Subspace-Aided Fault Detection Approach for the Drive Systems of Rolling Mills

Photo from wikipedia

This brief proposes a subspace-aided fault detection approach for the drive systems of strip rolling mills. Considering the impact of the unknown periodic load generated by the strip rolling process,… Click to show full abstract

This brief proposes a subspace-aided fault detection approach for the drive systems of strip rolling mills. Considering the impact of the unknown periodic load generated by the strip rolling process, the primary contributions are concluded as follows. First, this brief presents an approach to describe the subspace of the unknown/unmeasurable periodic load. Second, a fundamental frequency identification approach for the drive systems is proposed and then the subspace of the unknown periodic load can be constructed by the fundamental frequency. Third, this brief presents a subspace-aided fault detection approach to identify the data-driven stable kernel representation (SKR) of the closed-loop system by projecting the input–output (I/O) process data, so as to obtain a robust residual against the unknown periodic load. In addition, the effectiveness and performance of the approaches are verified by numerical examples and experimental data of the test rig for the drive systems of strip rolling mills. The results show that a robust residual generation against the unknown periodic load in the drive systems can be obtained and the robust subspace-aided fault detection can be achieved. Compared with the traditional method, the proposed approaches can improve the fault detection rate more effectively and be applied to the drive systems of strip rolling mills reliably.

Keywords: fault detection; subspace; drive systems

Journal Title: IEEE Transactions on Control Systems Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.