LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ensemble Subspace Segmentation Under Blockwise Constraints

The graph-based subspace segmentation technique has garnered a lot of attention in the visual data representation problem. In general, data (e.g., tracks of moving objects) are drawn from multiple linear… Click to show full abstract

The graph-based subspace segmentation technique has garnered a lot of attention in the visual data representation problem. In general, data (e.g., tracks of moving objects) are drawn from multiple linear subspaces. Thus, how to build a block-diagonal affinity matrix is the critical problem. In this paper, we propose a novel graph-based method, Ensemble Subspace Segmentation under Blockwise constraints (ESSB), which unifies least squares regression and a locality preserving graph regularizer into an ensemble learning framework. Specifically, compact encoding using least squares regression coefficients helps achieve a block-diagonal representation matrix among all samples. Meanwhile, the locality preserving regularizer tends to capture the intrinsic local structure, which further enhances the block-diagonal property. Both the blockwise efforts, i.e., least squares regression and the sparse regularizer, work jointly and are formulated in the ensemble learning framework, making ESSB more robust and efficient, especially when handling high-dimensional data. Finally, an efficient optimization solution based on inexact augmented Lagrange multiplier is derived with theoretical time complexity analysis. To demonstrate the effectiveness of the proposed method, we consider three different applications: face clustering, object clustering, and motion segmentation. Extensive results of both accuracy and normalized mutual information on four benchmarks, i.e., YaleB, ORL, COIL and Hopkins155, are reported. Also, the evaluations of computational cost are provided, based on which the superiority of our proposed method in both accuracy and efficiency is demonstrated compared with 12 baseline algorithms.

Keywords: subspace segmentation; segmentation blockwise; segmentation; ensemble subspace

Journal Title: IEEE Transactions on Circuits and Systems for Video Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.