LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

How to Assess the Quality of Compressed Surveillance Videos Using Face Recognition

Photo by krakenimages from unsplash

Video surveillance plays an important role in public security. To store the growing volume of surveillance videos, video compression is beneficial for reducing video volume; however, it is simultaneously harmful… Click to show full abstract

Video surveillance plays an important role in public security. To store the growing volume of surveillance videos, video compression is beneficial for reducing video volume; however, it is simultaneously harmful to the video quality. Video quality assessment (VQA) methods help to achieve a tradeoff between the data volume and perceptual quality of compressed surveillance videos. Generally speaking, surveillance video quality assessment (SVQA) is different from conventional VQA, because surveillance videos are usually used for specific tasks, e.g., pedestrian recognition, rather than for entertainment purposes. Therefore, in this paper, we propose two full-reference SVQA methods based on the concept of quality of recognition. We first design two new tasks, distorted face verification (DFV) and distorted face identification (DFI), based on which we further propose two SVQA methods, DFV-SVQA and DFI-SVQA, and corresponding quality metrics. The core components of the DFV-SVQA and DFI-SVQA methods are feature extractors (a DFV model and a DFI model), which we construct using convolutional-neural-network-based face recognition models. In addition, we construct a real-world surveillance video data set, based on which we analyze how various factors, including the video codec, compression level, face resolution, and light intensity, affect the quality of compressed surveillance videos. We find that, compared with conventional VQA methods, our methods are more effective in measuring the quality of surveillance videos while maintaining an acceptable time efficiency.

Keywords: video; face; quality; surveillance; surveillance videos

Journal Title: IEEE Transactions on Circuits and Systems for Video Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.