LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Show, Tell and Summarize: Dense Video Captioning Using Visual Cue Aided Sentence Summarization

Photo from wikipedia

In this work, we propose a division-and-summarization (DaS) framework for dense video captioning. After partitioning each untrimmed long video as multiple event proposals, where each event proposal consists of a… Click to show full abstract

In this work, we propose a division-and-summarization (DaS) framework for dense video captioning. After partitioning each untrimmed long video as multiple event proposals, where each event proposal consists of a set of short video segments, we extract visual feature (e.g., C3D feature) from each segment and use the existing image/video captioning approach to generate one sentence description for this segment. Considering that the generated sentences contain rich semantic descriptions about the whole event proposal, we formulate the dense video captioning task as a visual cue aided sentence summarization problem and propose a new two stage Long Short Term Memory (LSTM) approach equipped with a new hierarchical attention mechanism to summarize all generated sentences as one descriptive sentence with the aid of visual features. Specifically, the first-stage LSTM network takes all semantic words from the generated sentences and the visual features from all segments within one event proposal as the input, and acts as the encoder to effectively summarize both semantic and visual information related to this event proposal. The second-stage LSTM network takes the output from the first-stage LSTM network and the visual features from all video segments within one event proposal as the input, and acts as the decoder to generate one descriptive sentence for this event proposal. Our comprehensive experiments on the ActivityNet Captions dataset demonstrate the effectiveness of our newly proposed DaS framework for dense video captioning.

Keywords: video; event proposal; sentence; video captioning; dense video

Journal Title: IEEE Transactions on Circuits and Systems for Video Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.