LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generalizable No-Reference Image Quality Assessment via Deep Meta-Learning

Photo by hajjidirir from unsplash

Recently, researchers have shown great interest in using convolutional neural networks (CNNs) for no-reference image quality assessment (NR-IQA). Due to the lack of big training data, the efforts of existing… Click to show full abstract

Recently, researchers have shown great interest in using convolutional neural networks (CNNs) for no-reference image quality assessment (NR-IQA). Due to the lack of big training data, the efforts of existing metrics in optimizing CNN-based NR-IQA models remain limited. Furthermore, the diversity of distortions in images result in the generalization problem of NR-IQA models when trained with known distortions and tested on unseen distortions, which is an easy task for human. Hence, we propose a NR-IQA metric via deep meta-learning, which is highly generalizable in the face of unseen distortions. The fundamental idea is to learn the meta-knowledge shared by human when evaluating the quality of images with diversified distortions. Specifically, we define NR-IQA of different distortions as a series of tasks and propose a task selection strategy to build two task sets, which are characterized by synthetic to synthetic and synthetic to authentic distortions, respectively. Based on these two task sets, an optimization-based meta-learning is proposed to learn the generalized NR-IQA model, which can be directly used to evaluate the quality of images with unseen distortions. Extensive experiments demonstrate that our NR-IQA metric outperforms the state-of-the-arts in terms of both evaluation performance and generalization ability.

Keywords: reference image; meta learning; image quality; quality; meta; quality assessment

Journal Title: IEEE Transactions on Circuits and Systems for Video Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.