Image denoising methods using deep neural networks have achieved a great progress in the image restoration. However, the recovered images restored by these deep denoising methods usually suffer from severe… Click to show full abstract
Image denoising methods using deep neural networks have achieved a great progress in the image restoration. However, the recovered images restored by these deep denoising methods usually suffer from severe over-smoothness, artifacts, and detail loss. To improve the quality of restored images, we first propose Supplemental Priors (SP) method to adaptively predict depth-directed and sample-directed prior information for the reconstruction (decoder) networks. Furthermore, the over-parameterized deep neural networks and too precise supplemental prior information may cause an over-fitting, restricting the performance promotion. To improve the generalization of denoising networks, we further propose Regularization Priors (RP) method to flexibly learn depth-directed and dataset-directed regularization noise for the retrieving (encoder) networks. By respectively integrating the encoder and decoder with these plug-and-play RP block and SP block, we propose the final Adaptive Prior Denoising Networks, called APD-Nets. APD-Nets is the first attempt to simultaneously regularize and supplement denoising networks from the adaptive priors’ view with drawing learning-based mechanism into producing adaptive regularization noise and supplemental information. Extensive experiment results demonstrate our method significantly improves the generalization of denoising networks and the quality of restored images with greatly outperforming the traditional deep denoising methods both quantitatively and visually. The code will be released at https://github.com/JiangBoCS/APD-Nets.
               
Click one of the above tabs to view related content.