LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention

Photo by jadeaucamp from unsplash

Category-level 6D object pose estimation has gained popularity and it is still challenging due to the diversity of different instances within the same category. In this paper, a novel category-level… Click to show full abstract

Category-level 6D object pose estimation has gained popularity and it is still challenging due to the diversity of different instances within the same category. In this paper, a novel category-level 6D object pose estimation framework with structure encoder and reasoning attention is proposed. A structure autoencoder is introduced to mine the shared structure features in the color images within the same category, via a distinct learning strategy that recovers the image of another instance but with the most similar pose to the input. On this basis, a reasoning attention decoder and full connected layers are stacked to form a rotation prediction network, where the structure features and 3D shape features are integrated and projected to a semantic space. The semantic space includes observed patterns and learnable patterns, which are better learned by adding a shortcut connection branch parallel to reasoning attention decoder with gradient decouple. Further reasoning based on these patterns endows the decoder with powerful feature representation. Without 3D object models, the proposed method models the attributes of category implicitly in the semantic space and better performance of 6D object pose estimation is guaranteed by reasoning on this space. The effectiveness of the proposed method is verified by the results on public datasets and actual experiments.

Keywords: pose estimation; structure; reasoning attention; object pose; category

Journal Title: IEEE Transactions on Circuits and Systems for Video Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.