LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uncertainty-Aware and Multigranularity Consistent Constrained Model for Semi-Supervised Hashing

Photo from wikipedia

Recently, deep semi-supervised hashing methods have attracted increasing attention, which can significantly improve retrieval performance by leveraging abundant unlabeled data. These methods usually generate surrogate supervision signals to learn with… Click to show full abstract

Recently, deep semi-supervised hashing methods have attracted increasing attention, which can significantly improve retrieval performance by leveraging abundant unlabeled data. These methods usually generate surrogate supervision signals to learn with unlabeled data, such as neighborhood information and augmentation invariant requirements. However, an essential issue of these methods is that the supervised signals are not always reliable, which may damage the performance. In this paper, we propose a novel Uncertainty-Aware and Multi-Granularity Consistent Constrained Semi-Supervised Hashing (UMCSH) method to alleviate the negative effects of noisy supervised signals and enlarge the inter-class distance. Specifically, our UMCSH mainly consists of an Uncertainty-Aware Instance-Level Consistency (UAILC) model and a Cluster-Based Class-Level Consistency (CBCLC) model. UAILC introduces an uncertainty estimation method to select reliable supervised signals to extract discriminative features for each unlabeled data. CBCLC establishes connections between labeled data and unlabeled data by encouraging each unlabeled sample to be close to the hash center (calculated with the labeled data) according to its pseudo-label. Extensive experimental results demonstrate the superior performance of our proposed approach compared with several state-of-the-art semi-supervised hashing methods.

Keywords: supervised hashing; semi supervised; uncertainty aware; model

Journal Title: IEEE Transactions on Circuits and Systems for Video Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.