LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Representative Feature Alignment for Adaptive Object Detection

Photo by florianklauer from unsplash

Unsupervised domain adaptation for object detection aims to generalize the object detector trained on the label-rich source domain to the unlabeled target domain. Recently, existing works adopt the instance-level alignment… Click to show full abstract

Unsupervised domain adaptation for object detection aims to generalize the object detector trained on the label-rich source domain to the unlabeled target domain. Recently, existing works adopt the instance-level alignment or pixel-level alignment to perform domain transfer, which can effectively avoid the negative transfer due to the diverse background between domains. However, we find that they treat all the regions of an instance feature equally without suppressing background area. They do not segment the specific texture and discriminative regions of objects, which are transferable during adaptation. We call the features that combine the local structure feature and semantic discriminant features as representative features. We propose a novel Representative Feature Alignment (RFA) model to align the features extracted from representative patterns of objects, i.e. representative features, for domain adaptation. Specifically, the representative features are extracted by the Representative Feature Extraction (RFE) submodules. The RFE submodules take the features extracted from different intermediate layers of the detector as input, and filter out the representative features layer-by-layer via integrating class weighting generator, category selection and class activation mapping. Then the representative features from multi-layers are further adaptively aggregated to obtain the final representative features, which are utilized to conduct feature alignment in a class-aware manner. Our representative features are free of untransferable regions and background areas, which leads to better feature alignment. Extensive experimental results show that the proposed model outperforms state-of-the-art methods on a few benchmark datasets.

Keywords: feature alignment; feature; object detection; representative feature; representative features

Journal Title: IEEE Transactions on Circuits and Systems for Video Technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.