LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visual Tracking With Convolutional Random Vector Functional Link Network

Photo by dulhiier from unsplash

Deep neural network-based methods have recently achieved excellent performance in visual tracking task. As very few training samples are available in visual tracking task, those approaches rely heavily on extremely… Click to show full abstract

Deep neural network-based methods have recently achieved excellent performance in visual tracking task. As very few training samples are available in visual tracking task, those approaches rely heavily on extremely large auxiliary dataset such as ImageNet to pretrain the model. In order to address the discrepancy between the source domain (the auxiliary data) and the target domain (the object being tracked), they need to be finetuned during the tracking process. However, those methods suffer from sensitivity to the hyper-parameters such as learning rate, maximum number of epochs, size of mini-batch, and so on. Thus, it is worthy to investigate whether pretraining and fine tuning through conventional back-prop is essential for visual tracking. In this paper, we shed light on this line of research by proposing convolutional random vector functional link (CRVFL) neural network, which can be regarded as a marriage of the convolutional neural network and random vector functional link network, to simplify the visual tracking system. The parameters in the convolutional layer are randomly initialized and kept fixed. Only the parameters in the fully connected layer need to be learned. We further propose an elegant approach to update the tracker. In the widely used visual tracking benchmark, without any auxiliary data, a single CRVFL model achieves 79.0% with a threshold of 20 pixels for the precision plot. Moreover, an ensemble of CRVFL yields comparatively the best result of 86.3%.

Keywords: functional link; network; vector functional; visual tracking; random vector

Journal Title: IEEE Transactions on Cybernetics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.