LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Correlation Filter Learning Toward Peak Strength for Visual Tracking

This paper presents a novel visual tracking approach to correlation filter learning toward peak strength of correlation response. Previous methods leverage all features of the target and the immediate background… Click to show full abstract

This paper presents a novel visual tracking approach to correlation filter learning toward peak strength of correlation response. Previous methods leverage all features of the target and the immediate background to learn a correlation filter. Some features, however, may be distractive to tracking, like those from occlusion and local deformation, resulting in unstable tracking performance. This paper aims at solving this issue and proposes a novel algorithm to learn the correlation filter. The proposed approach, by imposing an elastic net constraint on the filter, can adaptively eliminate those distractive features in the correlation filtering. A new peak strength metric is proposed to measure the discriminative capability of the learned correlation filter. It is demonstrated that the proposed approach effectively strengthens the peak of the correlation response, leading to more discriminative performance than previous methods. Extensive experiments on a challenging visual tracking benchmark demonstrate that the proposed tracker outperforms most state-of-the-art methods.

Keywords: peak strength; filter learning; visual tracking; correlation; correlation filter

Journal Title: IEEE Transactions on Cybernetics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.