LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dimension Reduction for Non-Gaussian Data by Adaptive Discriminative Analysis

High-dimensional non-Gaussian data are ubiquitous in many real applications. Face recognition is a typical example of such scenarios. The sampled face images of each person in the original data space… Click to show full abstract

High-dimensional non-Gaussian data are ubiquitous in many real applications. Face recognition is a typical example of such scenarios. The sampled face images of each person in the original data space are more closely located to each other than to those of the same individuals due to the changes of various conditions like illumination, pose variation, and facial expression. They are often non-Gaussian and differentiating the importance of each data point has been recognized as an effective approach to process the high-dimensional non-Gaussian data. In this paper, to embed non-Gaussian data well, we propose a novel unified framework named adaptive discriminative analysis (ADA), which combines the sample’s importance measurement and subspace learning in a unified framework. Therefore, our ADA can preserve the within-class local structure and learn the discriminative transformation functions simultaneously by minimizing the distances of the projected samples within the same classes while maximizing the between-class separability. Meanwhile, an efficient method is developed to solve our formulated problem. Comprehensive analyses, including convergence behavior and parameter determination, together with the relationship to other related approaches, are as well presented. Systematical experiments are conducted to understand the work of our proposed ADA. Promising experimental results on various types of real-world benchmark data sets are provided to examine the effectiveness of our algorithm. Furthermore, we have also evaluated our method in face recognition. They all validate the effectiveness of our method on processing the high-dimensional non-Gaussian data.

Keywords: discriminative analysis; gaussian data; non gaussian; adaptive discriminative

Journal Title: IEEE Transactions on Cybernetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.